mathlogic.lv Mathematics, Logic, Algorithms

Axiomatic Proof Of p→(¬q→¬(p→q))

This theorem serves in proof of completenes of axiom system.

Axiomatic proof follows.

[L1] ((p→((¬q→(((p→q)→¬q)→¬(p→q)))→(¬q→¬(p→q))))→((p→(¬q→(((p→q)→¬q)→¬(p→q))))→(p→(¬q→¬(p→q))))) by substitution of [A2] with p↦p, q↦(¬q→(((p→q)→¬q)→¬(p→q))), r↦(¬q→¬(p→q))
[L2] (((¬q→(((p→q)→¬q)→¬(p→q)))→(¬q→¬(p→q)))→(p→((¬q→(((p→q)→¬q)→¬(p→q)))→(¬q→¬(p→q))))) by substitution of [A1] with p↦((¬q→(((p→q)→¬q)→¬(p→q)))→(¬q→¬(p→q))), q↦p
[L3] (((¬q→(((p→q)→¬q)→¬(p→q)))→((¬q→((p→q)→¬q))→(¬q→¬(p→q))))→(((¬q→(((p→q)→¬q)→¬(p→q)))→(¬q→((p→q)→¬q)))→((¬q→(((p→q)→¬q)→¬(p→q)))→(¬q→¬(p→q))))) by substitution of [A2] with p↦(¬q→(((p→q)→¬q)→¬(p→q))), q↦(¬q→((p→q)→¬q)), r↦(¬q→¬(p→q))
[L4] ((¬q→(((p→q)→¬q)→¬(p→q)))→((¬q→((p→q)→¬q))→(¬q→¬(p→q)))) by substitution of [A2] with p↦¬q, q↦((p→q)→¬q), r↦¬(p→q)
[L5] (((¬q→(((p→q)→¬q)→¬(p→q)))→(¬q→((p→q)→¬q)))→((¬q→(((p→q)→¬q)→¬(p→q)))→(¬q→¬(p→q)))) by detachment of [L3] and [L4]
[L6] ((¬q→((p→q)→¬q))→((¬q→(((p→q)→¬q)→¬(p→q)))→(¬q→((p→q)→¬q)))) by substitution of [A1] with p↦(¬q→((p→q)→¬q)), q↦(¬q→(((p→q)→¬q)→¬(p→q)))
[L7] (¬q→((p→q)→¬q)) by substitution of [A1] with p↦¬q, q↦(p→q)
[L8] ((¬q→(((p→q)→¬q)→¬(p→q)))→(¬q→((p→q)→¬q))) by detachment of [L6] and [L7]
[L9] ((¬q→(((p→q)→¬q)→¬(p→q)))→(¬q→¬(p→q))) by detachment of [L5] and [L8]
[L10] (p→((¬q→(((p→q)→¬q)→¬(p→q)))→(¬q→¬(p→q)))) by detachment of [L2] and [L9]
[L11] ((p→(¬q→(((p→q)→¬q)→¬(p→q))))→(p→(¬q→¬(p→q)))) by detachment of [L1] and [L10]
[L12] ((p→((((p→q)→¬q)→¬(p→q))→(¬q→(((p→q)→¬q)→¬(p→q)))))→((p→(((p→q)→¬q)→¬(p→q)))→(p→(¬q→(((p→q)→¬q)→¬(p→q)))))) by substitution of [A2] with p↦p, q↦(((p→q)→¬q)→¬(p→q)), r↦(¬q→(((p→q)→¬q)→¬(p→q)))
[L13] (((((p→q)→¬q)→¬(p→q))→(¬q→(((p→q)→¬q)→¬(p→q))))→(p→((((p→q)→¬q)→¬(p→q))→(¬q→(((p→q)→¬q)→¬(p→q)))))) by substitution of [A1] with p↦((((p→q)→¬q)→¬(p→q))→(¬q→(((p→q)→¬q)→¬(p→q)))), q↦p
[L14] ((((p→q)→¬q)→¬(p→q))→(¬q→(((p→q)→¬q)→¬(p→q)))) by substitution of [A1] with p↦(((p→q)→¬q)→¬(p→q)), q↦¬q
[L15] (p→((((p→q)→¬q)→¬(p→q))→(¬q→(((p→q)→¬q)→¬(p→q))))) by detachment of [L13] and [L14]
[L16] ((p→(((p→q)→¬q)→¬(p→q)))→(p→(¬q→(((p→q)→¬q)→¬(p→q))))) by detachment of [L12] and [L15]
[L17] ((p→(((p→q)→q)→(((p→q)→¬q)→¬(p→q))))→((p→((p→q)→q))→(p→(((p→q)→¬q)→¬(p→q))))) by substitution of [A2] with p↦p, q↦((p→q)→q), r↦(((p→q)→¬q)→¬(p→q))
[L18] ((((p→q)→q)→(((p→q)→¬q)→¬(p→q)))→(p→(((p→q)→q)→(((p→q)→¬q)→¬(p→q))))) by substitution of [A1] with p↦(((p→q)→q)→(((p→q)→¬q)→¬(p→q))), q↦p
[L19] (((p→q)→q)→(((p→q)→¬q)→¬(p→q))) by substitution of [A9] with p↦(p→q), q↦q
[L20] (p→(((p→q)→q)→(((p→q)→¬q)→¬(p→q)))) by detachment of [L18] and [L19]
[L21] ((p→((p→q)→q))→(p→(((p→q)→¬q)→¬(p→q)))) by detachment of [L17] and [L20]
[L22] ((p→(((p→q)→p)→((p→q)→q)))→((p→((p→q)→p))→(p→((p→q)→q)))) by substitution of [A2] with p↦p, q↦((p→q)→p), r↦((p→q)→q)
[L23] ((((p→q)→p)→((p→q)→q))→(p→(((p→q)→p)→((p→q)→q)))) by substitution of [A1] with p↦(((p→q)→p)→((p→q)→q)), q↦p
[L24] (((p→q)→(p→q))→(((p→q)→p)→((p→q)→q))) by substitution of [A2] with p↦(p→q), q↦p, r↦q
[L25] (((p→q)→((a→(p→q))→(p→q)))→(((p→q)→(a→(p→q)))→((p→q)→(p→q)))) by substitution of [A2] with p↦(p→q), q↦(a→(p→q)), r↦(p→q)
[L26] ((p→q)→((a→(p→q))→(p→q))) by substitution of [A1] with p↦(p→q), q↦(a→(p→q))
[L27] (((p→q)→(a→(p→q)))→((p→q)→(p→q))) by detachment of [L25] and [L26]
[L28] ((p→q)→(a→(p→q))) by substitution of [A1] with p↦(p→q), q↦a
[L29] ((p→q)→(p→q)) by detachment of [L27] and [L28]
[L30] (((p→q)→p)→((p→q)→q)) by detachment of [L24] and [L29]
[L31] (p→(((p→q)→p)→((p→q)→q))) by detachment of [L23] and [L30]
[L32] ((p→((p→q)→p))→(p→((p→q)→q))) by detachment of [L22] and [L31]
[L33] (p→((p→q)→p)) by substitution of [A1] with p↦p, q↦(p→q)
[L34] (p→((p→q)→q)) by detachment of [L32] and [L33]
[L35] (p→(((p→q)→¬q)→¬(p→q))) by detachment of [L21] and [L34]
[L36] (p→(¬q→(((p→q)→¬q)→¬(p→q)))) by detachment of [L16] and [L35]
[L37] (p→(¬q→¬(p→q))) by detachment of [L11] and [L36]

Proof by Tableau method is here.