Axiomatic Proof Of Peirce's Law
Peirce's Law is a very short statement that is true, but hard to understand by heart.
Usually it is proven using Deduction Theorem. Here I provide an axiomatic proof.
[L1] ((¬((p→q)→p)→(((p→q)→p)→p))→((((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p)))→(((p→q)→p)→p))→((¬((p→q)→p)∨((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p))))→(((p→q)→p)→p)))) by substitution of [A8] with p↦¬((p→q)→p), r↦(((p→q)→p)→p), q↦((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p))) [L2] (¬((p→q)→p)→(((p→q)→p)→p)) by substitution of [A10] with p↦((p→q)→p), q↦p [L3] ((((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p)))→(((p→q)→p)→p))→((¬((p→q)→p)∨((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p))))→(((p→q)→p)→p))) by detachment of [L1] and [L2] [L4] ((((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p)))→((p∨¬p)→(((p→q)→p)→p)))→((((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p)))→(p∨¬p))→(((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p)))→(((p→q)→p)→p)))) by substitution of [A2] with p↦((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p))), q↦(p∨¬p), r↦(((p→q)→p)→p) [L5] (((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p)))→((p∨¬p)→(((p→q)→p)→p))) by substitution of [A4] with p↦(p∨¬p), q↦((p∨¬p)→(((p→q)→p)→p)) [L6] ((((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p)))→(p∨¬p))→(((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p)))→(((p→q)→p)→p))) by detachment of [L4] and [L5] [L7] (((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p)))→(p∨¬p)) by substitution of [A3] with p↦(p∨¬p), q↦((p∨¬p)→(((p→q)→p)→p)) [L8] (((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p)))→(((p→q)→p)→p)) by detachment of [L6] and [L7] [L9] ((¬((p→q)→p)∨((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p))))→(((p→q)→p)→p)) by detachment of [L3] and [L8] [L10] (((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p)))→(¬((p→q)→p)∨((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p))))) by substitution of [A7] with q↦((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p))), p↦¬((p→q)→p) [L11] ((p∨¬p)→(((p∨¬p)→(((p→q)→p)→p))→((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p))))) by substitution of [A5] with p↦(p∨¬p), q↦((p∨¬p)→(((p→q)→p)→p)) [L12] (((p∨¬p)→(((p→q)→p)→p))→((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p)))) by detachment of [L11] and [A11] [L13] ((p→(((p→q)→p)→p))→((¬p→(((p→q)→p)→p))→((p∨¬p)→(((p→q)→p)→p)))) by substitution of [A8] with p↦p, r↦(((p→q)→p)→p), q↦¬p [L14] (p→(((p→q)→p)→p)) by substitution of [A1] with p↦p, q↦((p→q)→p) [L15] ((¬p→(((p→q)→p)→p))→((p∨¬p)→(((p→q)→p)→p))) by detachment of [L13] and [L14] [L16] ((¬p→((((p→q)→p)→(p→q))→(((p→q)→p)→p)))→((¬p→(((p→q)→p)→(p→q)))→(¬p→(((p→q)→p)→p)))) by substitution of [A2] with p↦¬p, q↦(((p→q)→p)→(p→q)), r↦(((p→q)→p)→p) [L17] (((((p→q)→p)→(p→q))→(((p→q)→p)→p))→(¬p→((((p→q)→p)→(p→q))→(((p→q)→p)→p)))) by substitution of [A1] with p↦((((p→q)→p)→(p→q))→(((p→q)→p)→p)), q↦¬p [L18] ((((p→q)→p)→((p→q)→p))→((((p→q)→p)→(p→q))→(((p→q)→p)→p))) by substitution of [A2] with p↦((p→q)→p), q↦(p→q), r↦p [L19] (((p→q)→(p→p))→(((p→q)→p)→((p→q)→p))) by substitution of [A2] with p↦(p→q), q↦p, r↦p [L20] ((p→(q→p))→((p→q)→(p→p))) by substitution of [A2] with p↦p, q↦q, r↦p [L21] ((p→q)→(p→p)) by detachment of [L20] and [A1] [L22] (((p→q)→p)→((p→q)→p)) by detachment of [L19] and [L21] [L23] ((((p→q)→p)→(p→q))→(((p→q)→p)→p)) by detachment of [L18] and [L22] [L24] (¬p→((((p→q)→p)→(p→q))→(((p→q)→p)→p))) by detachment of [L17] and [L23] [L25] ((¬p→(((p→q)→p)→(p→q)))→(¬p→(((p→q)→p)→p))) by detachment of [L16] and [L24] [L26] ((¬p→((p→q)→(((p→q)→p)→(p→q))))→((¬p→(p→q))→(¬p→(((p→q)→p)→(p→q))))) by substitution of [A2] with p↦¬p, q↦(p→q), r↦(((p→q)→p)→(p→q)) [L27] (((p→q)→(((p→q)→p)→(p→q)))→(¬p→((p→q)→(((p→q)→p)→(p→q))))) by substitution of [A1] with p↦((p→q)→(((p→q)→p)→(p→q))), q↦¬p [L28] ((p→q)→(((p→q)→p)→(p→q))) by substitution of [A1] with p↦(p→q), q↦((p→q)→p) [L29] (¬p→((p→q)→(((p→q)→p)→(p→q)))) by detachment of [L27] and [L28] [L30] ((¬p→(p→q))→(¬p→(((p→q)→p)→(p→q)))) by detachment of [L26] and [L29] [L31] (¬p→(((p→q)→p)→(p→q))) by detachment of [L30] and [A10] [L32] (¬p→(((p→q)→p)→p)) by detachment of [L25] and [L31] [L33] ((p∨¬p)→(((p→q)→p)→p)) by detachment of [L15] and [L32] [L34] ((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p))) by detachment of [L12] and [L33] [L35] (¬((p→q)→p)∨((p∨¬p)∧((p∨¬p)→(((p→q)→p)→p)))) by detachment of [L10] and [L34] [L36] (((p→q)→p)→p) by detachment of [L9] and [L35]
Proof by Tableau method is here.