mathlogic.lv Mathematics, Logic, Algorithms

Axiomatic Proof Of Negation Introduction

These two formulas are present in Whitehead/Russel Principia Mathematica.

Axiomatic proofs follow.

[L1] ((((¬p→¬q)→p)→((¬p→((¬p→¬q)→p))→(¬p→q)))→((((¬p→¬q)→p)→(¬p→((¬p→¬q)→p)))→(((¬p→¬q)→p)→(¬p→q)))) by substitution of [A2] with p↦((¬p→¬q)→p), q↦(¬p→((¬p→¬q)→p)), r↦(¬p→q)
[L2] (((¬p→((¬p→¬q)→p))→(¬p→q))→(((¬p→¬q)→p)→((¬p→((¬p→¬q)→p))→(¬p→q)))) by substitution of [A1] with p↦((¬p→((¬p→¬q)→p))→(¬p→q)), q↦((¬p→¬q)→p)
[L3] ((¬p→(((¬p→¬q)→p)→q))→((¬p→((¬p→¬q)→p))→(¬p→q))) by substitution of [A2] with p↦¬p, q↦((¬p→¬q)→p), r↦q
[L4] ((¬p→(((¬p→¬q)→¬p)→(((¬p→¬q)→p)→q)))→((¬p→((¬p→¬q)→¬p))→(¬p→(((¬p→¬q)→p)→q)))) by substitution of [A2] with p↦¬p, q↦((¬p→¬q)→¬p), r↦(((¬p→¬q)→p)→q)
[L5] ((((¬p→¬q)→¬p)→(((¬p→¬q)→p)→q))→(¬p→(((¬p→¬q)→¬p)→(((¬p→¬q)→p)→q)))) by substitution of [A1] with p↦(((¬p→¬q)→¬p)→(((¬p→¬q)→p)→q)), q↦¬p
[L6] ((((¬p→¬q)→¬p)→((((¬p→¬q)→p)→((¬p→¬q)→¬p))→(((¬p→¬q)→p)→q)))→((((¬p→¬q)→¬p)→(((¬p→¬q)→p)→((¬p→¬q)→¬p)))→(((¬p→¬q)→¬p)→(((¬p→¬q)→p)→q)))) by substitution of [A2] with p↦((¬p→¬q)→¬p), q↦(((¬p→¬q)→p)→((¬p→¬q)→¬p)), r↦(((¬p→¬q)→p)→q)
[L7] (((((¬p→¬q)→p)→((¬p→¬q)→¬p))→(((¬p→¬q)→p)→q))→(((¬p→¬q)→¬p)→((((¬p→¬q)→p)→((¬p→¬q)→¬p))→(((¬p→¬q)→p)→q)))) by substitution of [A1] with p↦((((¬p→¬q)→p)→((¬p→¬q)→¬p))→(((¬p→¬q)→p)→q)), q↦((¬p→¬q)→¬p)
[L8] ((((¬p→¬q)→p)→(((¬p→¬q)→¬p)→q))→((((¬p→¬q)→p)→((¬p→¬q)→¬p))→(((¬p→¬q)→p)→q))) by substitution of [A2] with p↦((¬p→¬q)→p), q↦((¬p→¬q)→¬p), r↦q
[L9] ((((¬p→¬q)→p)→((((¬p→¬q)→¬p)→¬(¬p→¬q))→(((¬p→¬q)→¬p)→q)))→((((¬p→¬q)→p)→(((¬p→¬q)→¬p)→¬(¬p→¬q)))→(((¬p→¬q)→p)→(((¬p→¬q)→¬p)→q)))) by substitution of [A2] with p↦((¬p→¬q)→p), q↦(((¬p→¬q)→¬p)→¬(¬p→¬q)), r↦(((¬p→¬q)→¬p)→q)
[L10] (((((¬p→¬q)→¬p)→¬(¬p→¬q))→(((¬p→¬q)→¬p)→q))→(((¬p→¬q)→p)→((((¬p→¬q)→¬p)→¬(¬p→¬q))→(((¬p→¬q)→¬p)→q)))) by substitution of [A1] with p↦((((¬p→¬q)→¬p)→¬(¬p→¬q))→(((¬p→¬q)→¬p)→q)), q↦((¬p→¬q)→p)
[L11] ((((¬p→¬q)→¬p)→(¬(¬p→¬q)→q))→((((¬p→¬q)→¬p)→¬(¬p→¬q))→(((¬p→¬q)→¬p)→q))) by substitution of [A2] with p↦((¬p→¬q)→¬p), q↦¬(¬p→¬q), r↦q
[L12] ((((¬p→¬q)→¬p)→((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→(¬(¬p→¬q)→q)))→((((¬p→¬q)→¬p)→(((¬p→¬q)→¬¬p)→¬(¬p→¬q)))→(((¬p→¬q)→¬p)→(¬(¬p→¬q)→q)))) by substitution of [A2] with p↦((¬p→¬q)→¬p), q↦(((¬p→¬q)→¬¬p)→¬(¬p→¬q)), r↦(¬(¬p→¬q)→q)
[L13] (((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→(¬(¬p→¬q)→q))→(((¬p→¬q)→¬p)→((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→(¬(¬p→¬q)→q)))) by substitution of [A1] with p↦((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→(¬(¬p→¬q)→q)), q↦((¬p→¬q)→¬p)
[L14] (((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→((¬(¬p→¬q)→(((¬p→¬q)→¬¬p)→¬(¬p→¬q)))→(¬(¬p→¬q)→q)))→(((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→(¬(¬p→¬q)→(((¬p→¬q)→¬¬p)→¬(¬p→¬q))))→((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→(¬(¬p→¬q)→q)))) by substitution of [A2] with p↦(((¬p→¬q)→¬¬p)→¬(¬p→¬q)), q↦(¬(¬p→¬q)→(((¬p→¬q)→¬¬p)→¬(¬p→¬q))), r↦(¬(¬p→¬q)→q)
[L15] (((¬(¬p→¬q)→(((¬p→¬q)→¬¬p)→¬(¬p→¬q)))→(¬(¬p→¬q)→q))→((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→((¬(¬p→¬q)→(((¬p→¬q)→¬¬p)→¬(¬p→¬q)))→(¬(¬p→¬q)→q)))) by substitution of [A1] with p↦((¬(¬p→¬q)→(((¬p→¬q)→¬¬p)→¬(¬p→¬q)))→(¬(¬p→¬q)→q)), q↦(((¬p→¬q)→¬¬p)→¬(¬p→¬q))
[L16] ((¬(¬p→¬q)→((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→q))→((¬(¬p→¬q)→(((¬p→¬q)→¬¬p)→¬(¬p→¬q)))→(¬(¬p→¬q)→q))) by substitution of [A2] with p↦¬(¬p→¬q), q↦(((¬p→¬q)→¬¬p)→¬(¬p→¬q)), r↦q
[L17] ((¬(¬p→¬q)→(q→((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→q)))→((¬(¬p→¬q)→q)→(¬(¬p→¬q)→((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→q)))) by substitution of [A2] with p↦¬(¬p→¬q), q↦q, r↦((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→q)
[L18] ((q→((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→q))→(¬(¬p→¬q)→(q→((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→q)))) by substitution of [A1] with p↦(q→((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→q)), q↦¬(¬p→¬q)
[L19] (q→((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→q)) by substitution of [A1] with p↦q, q↦(((¬p→¬q)→¬¬p)→¬(¬p→¬q))
[L20] (¬(¬p→¬q)→(q→((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→q))) by detachment of [L18] and [L19]
[L21] ((¬(¬p→¬q)→q)→(¬(¬p→¬q)→((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→q))) by detachment of [L17] and [L20]
[L22] ((¬(¬p→¬q)→((¬q→¬(¬p→¬q))→q))→((¬(¬p→¬q)→(¬q→¬(¬p→¬q)))→(¬(¬p→¬q)→q))) by substitution of [A2] with p↦¬(¬p→¬q), q↦(¬q→¬(¬p→¬q)), r↦q
[L23] (((¬q→¬(¬p→¬q))→q)→(¬(¬p→¬q)→((¬q→¬(¬p→¬q))→q))) by substitution of [A1] with p↦((¬q→¬(¬p→¬q))→q), q↦¬(¬p→¬q)
[L24] (((¬q→¬(¬p→¬q))→(¬¬q→q))→(((¬q→¬(¬p→¬q))→¬¬q)→((¬q→¬(¬p→¬q))→q))) by substitution of [A2] with p↦(¬q→¬(¬p→¬q)), q↦¬¬q, r↦q
[L25] ((¬¬q→q)→((¬q→¬(¬p→¬q))→(¬¬q→q))) by substitution of [A1] with p↦(¬¬q→q), q↦(¬q→¬(¬p→¬q))
[L26] ((¬¬q→((¬q→q)→q))→((¬¬q→(¬q→q))→(¬¬q→q))) by substitution of [A2] with p↦¬¬q, q↦(¬q→q), r↦q
[L27] (((¬q→q)→q)→(¬¬q→((¬q→q)→q))) by substitution of [A1] with p↦((¬q→q)→q), q↦¬¬q
[L28] (((¬q→q)→((q∨¬q)→q))→(((¬q→q)→(q∨¬q))→((¬q→q)→q))) by substitution of [A2] with p↦(¬q→q), q↦(q∨¬q), r↦q
[L29] ((q→q)→((¬q→q)→((q∨¬q)→q))) by substitution of [A8] with p↦q, r↦q, q↦¬q
[L30] ((q→((a→q)→q))→((q→(a→q))→(q→q))) by substitution of [A2] with p↦q, q↦(a→q), r↦q
[L31] (q→((a→q)→q)) by substitution of [A1] with p↦q, q↦(a→q)
[L32] ((q→(a→q))→(q→q)) by detachment of [L30] and [L31]
[L33] (q→(a→q)) by substitution of [A1] with p↦q, q↦a
[L34] (q→q) by detachment of [L32] and [L33]
[L35] ((¬q→q)→((q∨¬q)→q)) by detachment of [L29] and [L34]
[L36] (((¬q→q)→(q∨¬q))→((¬q→q)→q)) by detachment of [L28] and [L35]
[L37] ((q∨¬q)→((¬q→q)→(q∨¬q))) by substitution of [A1] with p↦(q∨¬q), q↦(¬q→q)
[L38] (q∨¬q) by substitution of [A11] with p↦q
[L39] ((¬q→q)→(q∨¬q)) by detachment of [L37] and [L38]
[L40] ((¬q→q)→q) by detachment of [L36] and [L39]
[L41] (¬¬q→((¬q→q)→q)) by detachment of [L27] and [L40]
[L42] ((¬¬q→(¬q→q))→(¬¬q→q)) by detachment of [L26] and [L41]
[L43] (¬¬q→(¬q→q)) by substitution of [A10] with p↦¬q, q↦q
[L44] (¬¬q→q) by detachment of [L42] and [L43]
[L45] ((¬q→¬(¬p→¬q))→(¬¬q→q)) by detachment of [L25] and [L44]
[L46] (((¬q→¬(¬p→¬q))→¬¬q)→((¬q→¬(¬p→¬q))→q)) by detachment of [L24] and [L45]
[L47] ((¬q→(¬p→¬q))→((¬q→¬(¬p→¬q))→¬¬q)) by substitution of [A9] with p↦¬q, q↦(¬p→¬q)
[L48] (¬q→(¬p→¬q)) by substitution of [A1] with p↦¬q, q↦¬p
[L49] ((¬q→¬(¬p→¬q))→¬¬q) by detachment of [L47] and [L48]
[L50] ((¬q→¬(¬p→¬q))→q) by detachment of [L46] and [L49]
[L51] (¬(¬p→¬q)→((¬q→¬(¬p→¬q))→q)) by detachment of [L23] and [L50]
[L52] ((¬(¬p→¬q)→(¬q→¬(¬p→¬q)))→(¬(¬p→¬q)→q)) by detachment of [L22] and [L51]
[L53] (¬(¬p→¬q)→(¬q→¬(¬p→¬q))) by substitution of [A1] with p↦¬(¬p→¬q), q↦¬q
[L54] (¬(¬p→¬q)→q) by detachment of [L52] and [L53]
[L55] (¬(¬p→¬q)→((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→q)) by detachment of [L21] and [L54]
[L56] ((¬(¬p→¬q)→(((¬p→¬q)→¬¬p)→¬(¬p→¬q)))→(¬(¬p→¬q)→q)) by detachment of [L16] and [L55]
[L57] ((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→((¬(¬p→¬q)→(((¬p→¬q)→¬¬p)→¬(¬p→¬q)))→(¬(¬p→¬q)→q))) by detachment of [L15] and [L56]
[L58] (((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→(¬(¬p→¬q)→(((¬p→¬q)→¬¬p)→¬(¬p→¬q))))→((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→(¬(¬p→¬q)→q))) by detachment of [L14] and [L57]
[L59] ((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→(¬(¬p→¬q)→(((¬p→¬q)→¬¬p)→¬(¬p→¬q)))) by substitution of [A1] with p↦(((¬p→¬q)→¬¬p)→¬(¬p→¬q)), q↦¬(¬p→¬q)
[L60] ((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→(¬(¬p→¬q)→q)) by detachment of [L58] and [L59]
[L61] (((¬p→¬q)→¬p)→((((¬p→¬q)→¬¬p)→¬(¬p→¬q))→(¬(¬p→¬q)→q))) by detachment of [L13] and [L60]
[L62] ((((¬p→¬q)→¬p)→(((¬p→¬q)→¬¬p)→¬(¬p→¬q)))→(((¬p→¬q)→¬p)→(¬(¬p→¬q)→q))) by detachment of [L12] and [L61]
[L63] (((¬p→¬q)→¬p)→(((¬p→¬q)→¬¬p)→¬(¬p→¬q))) by substitution of [A9] with p↦(¬p→¬q), q↦¬p
[L64] (((¬p→¬q)→¬p)→(¬(¬p→¬q)→q)) by detachment of [L62] and [L63]
[L65] ((((¬p→¬q)→¬p)→¬(¬p→¬q))→(((¬p→¬q)→¬p)→q)) by detachment of [L11] and [L64]
[L66] (((¬p→¬q)→p)→((((¬p→¬q)→¬p)→¬(¬p→¬q))→(((¬p→¬q)→¬p)→q))) by detachment of [L10] and [L65]
[L67] ((((¬p→¬q)→p)→(((¬p→¬q)→¬p)→¬(¬p→¬q)))→(((¬p→¬q)→p)→(((¬p→¬q)→¬p)→q))) by detachment of [L9] and [L66]
[L68] (((¬p→¬q)→p)→(((¬p→¬q)→¬p)→¬(¬p→¬q))) by substitution of [A9] with p↦(¬p→¬q), q↦p
[L69] (((¬p→¬q)→p)→(((¬p→¬q)→¬p)→q)) by detachment of [L67] and [L68]
[L70] ((((¬p→¬q)→p)→((¬p→¬q)→¬p))→(((¬p→¬q)→p)→q)) by detachment of [L8] and [L69]
[L71] (((¬p→¬q)→¬p)→((((¬p→¬q)→p)→((¬p→¬q)→¬p))→(((¬p→¬q)→p)→q))) by detachment of [L7] and [L70]
[L72] ((((¬p→¬q)→¬p)→(((¬p→¬q)→p)→((¬p→¬q)→¬p)))→(((¬p→¬q)→¬p)→(((¬p→¬q)→p)→q))) by detachment of [L6] and [L71]
[L73] (((¬p→¬q)→¬p)→(((¬p→¬q)→p)→((¬p→¬q)→¬p))) by substitution of [A1] with p↦((¬p→¬q)→¬p), q↦((¬p→¬q)→p)
[L74] (((¬p→¬q)→¬p)→(((¬p→¬q)→p)→q)) by detachment of [L72] and [L73]
[L75] (¬p→(((¬p→¬q)→¬p)→(((¬p→¬q)→p)→q))) by detachment of [L5] and [L74]
[L76] ((¬p→((¬p→¬q)→¬p))→(¬p→(((¬p→¬q)→p)→q))) by detachment of [L4] and [L75]
[L77] (¬p→((¬p→¬q)→¬p)) by substitution of [A1] with p↦¬p, q↦(¬p→¬q)
[L78] (¬p→(((¬p→¬q)→p)→q)) by detachment of [L76] and [L77]
[L79] ((¬p→((¬p→¬q)→p))→(¬p→q)) by detachment of [L3] and [L78]
[L80] (((¬p→¬q)→p)→((¬p→((¬p→¬q)→p))→(¬p→q))) by detachment of [L2] and [L79]
[L81] ((((¬p→¬q)→p)→(¬p→((¬p→¬q)→p)))→(((¬p→¬q)→p)→(¬p→q))) by detachment of [L1] and [L80]
[L82] (((¬p→¬q)→p)→(¬p→((¬p→¬q)→p))) by substitution of [A1] with p↦((¬p→¬q)→p), q↦¬p
[L83] (((¬p→¬q)→p)→(¬p→q)) by detachment of [L81] and [L82]

Proof by Tableau method is here.

[L1] (((¬p→q)→(((¬p→¬q)→¬¬p)→((¬p→¬q)→p)))→(((¬p→q)→((¬p→¬q)→¬¬p))→((¬p→q)→((¬p→¬q)→p)))) by substitution of [A2] with p↦(¬p→q), q↦((¬p→¬q)→¬¬p), r↦((¬p→¬q)→p)
[L2] ((((¬p→¬q)→¬¬p)→((¬p→¬q)→p))→((¬p→q)→(((¬p→¬q)→¬¬p)→((¬p→¬q)→p)))) by substitution of [A1] with p↦(((¬p→¬q)→¬¬p)→((¬p→¬q)→p)), q↦(¬p→q)
[L3] (((¬p→¬q)→(¬¬p→p))→(((¬p→¬q)→¬¬p)→((¬p→¬q)→p))) by substitution of [A2] with p↦(¬p→¬q), q↦¬¬p, r↦p
[L4] ((¬¬p→p)→((¬p→¬q)→(¬¬p→p))) by substitution of [A1] with p↦(¬¬p→p), q↦(¬p→¬q)
[L5] ((¬¬p→((¬p→p)→p))→((¬¬p→(¬p→p))→(¬¬p→p))) by substitution of [A2] with p↦¬¬p, q↦(¬p→p), r↦p
[L6] (((¬p→p)→p)→(¬¬p→((¬p→p)→p))) by substitution of [A1] with p↦((¬p→p)→p), q↦¬¬p
[L7] (((¬p→p)→((p∨¬p)→p))→(((¬p→p)→(p∨¬p))→((¬p→p)→p))) by substitution of [A2] with p↦(¬p→p), q↦(p∨¬p), r↦p
[L8] ((p→p)→((¬p→p)→((p∨¬p)→p))) by substitution of [A8] with p↦p, r↦p, q↦¬p
[L9] ((p→((a→p)→p))→((p→(a→p))→(p→p))) by substitution of [A2] with p↦p, q↦(a→p), r↦p
[L10] (p→((a→p)→p)) by substitution of [A1] with p↦p, q↦(a→p)
[L11] ((p→(a→p))→(p→p)) by detachment of [L9] and [L10]
[L12] (p→(a→p)) by substitution of [A1] with p↦p, q↦a
[L13] (p→p) by detachment of [L11] and [L12]
[L14] ((¬p→p)→((p∨¬p)→p)) by detachment of [L8] and [L13]
[L15] (((¬p→p)→(p∨¬p))→((¬p→p)→p)) by detachment of [L7] and [L14]
[L16] ((p∨¬p)→((¬p→p)→(p∨¬p))) by substitution of [A1] with p↦(p∨¬p), q↦(¬p→p)
[L17] ((¬p→p)→(p∨¬p)) by detachment of [L16] and [A11]
[L18] ((¬p→p)→p) by detachment of [L15] and [L17]
[L19] (¬¬p→((¬p→p)→p)) by detachment of [L6] and [L18]
[L20] ((¬¬p→(¬p→p))→(¬¬p→p)) by detachment of [L5] and [L19]
[L21] (¬¬p→(¬p→p)) by substitution of [A10] with p↦¬p, q↦p
[L22] (¬¬p→p) by detachment of [L20] and [L21]
[L23] ((¬p→¬q)→(¬¬p→p)) by detachment of [L4] and [L22]
[L24] (((¬p→¬q)→¬¬p)→((¬p→¬q)→p)) by detachment of [L3] and [L23]
[L25] ((¬p→q)→(((¬p→¬q)→¬¬p)→((¬p→¬q)→p))) by detachment of [L2] and [L24]
[L26] (((¬p→q)→((¬p→¬q)→¬¬p))→((¬p→q)→((¬p→¬q)→p))) by detachment of [L1] and [L25]
[L27] ((¬p→q)→((¬p→¬q)→¬¬p)) by substitution of [A9] with p↦¬p, q↦q
[L28] ((¬p→q)→((¬p→¬q)→p)) by detachment of [L26] and [L27]

Proof by Tableau method is here.