mathlogic.lv Mathematics, Logic, Algorithms

Axiomatic Proof Of Negation Elimination Law

Axiomatic proof of the Negation Elimination is below.

[L1] ((¬p→((p→(¬q→¬p))→(p→q)))→((¬p→(p→(¬q→¬p)))→(¬p→(p→q)))) by substitution of [A2] with p↦¬p, q↦(p→(¬q→¬p)), r↦(p→q)
[L2] (((p→(¬q→¬p))→(p→q))→(¬p→((p→(¬q→¬p))→(p→q)))) by substitution of [A1] with p↦((p→(¬q→¬p))→(p→q)), q↦¬p
[L3] (((p→(¬q→¬p))→((p→(¬q→p))→(p→q)))→(((p→(¬q→¬p))→(p→(¬q→p)))→((p→(¬q→¬p))→(p→q)))) by substitution of [A2] with p↦(p→(¬q→¬p)), q↦(p→(¬q→p)), r↦(p→q)
[L4] (((p→(¬q→¬p))→((p→((¬q→p)→q))→((p→(¬q→p))→(p→q))))→(((p→(¬q→¬p))→(p→((¬q→p)→q)))→((p→(¬q→¬p))→((p→(¬q→p))→(p→q))))) by substitution of [A2] with p↦(p→(¬q→¬p)), q↦(p→((¬q→p)→q)), r↦((p→(¬q→p))→(p→q))
[L5] (((p→((¬q→p)→q))→((p→(¬q→p))→(p→q)))→((p→(¬q→¬p))→((p→((¬q→p)→q))→((p→(¬q→p))→(p→q))))) by substitution of [A1] with p↦((p→((¬q→p)→q))→((p→(¬q→p))→(p→q))), q↦(p→(¬q→¬p))
[L6] ((p→((¬q→p)→q))→((p→(¬q→p))→(p→q))) by substitution of [A2] with p↦p, q↦(¬q→p), r↦q
[L7] ((p→(¬q→¬p))→((p→((¬q→p)→q))→((p→(¬q→p))→(p→q)))) by detachment of [L5] and [L6]
[L8] (((p→(¬q→¬p))→(p→((¬q→p)→q)))→((p→(¬q→¬p))→((p→(¬q→p))→(p→q)))) by detachment of [L4] and [L7]
[L9] ((p→((¬q→¬p)→((¬q→p)→q)))→((p→(¬q→¬p))→(p→((¬q→p)→q)))) by substitution of [A2] with p↦p, q↦(¬q→¬p), r↦((¬q→p)→q)
[L10] (((¬q→¬p)→((¬q→p)→q))→(p→((¬q→¬p)→((¬q→p)→q)))) by substitution of [A1] with p↦((¬q→¬p)→((¬q→p)→q)), q↦p
[L11] (p→((¬q→¬p)→((¬q→p)→q))) by detachment of [L10] and [A3]
[L12] ((p→(¬q→¬p))→(p→((¬q→p)→q))) by detachment of [L9] and [L11]
[L13] ((p→(¬q→¬p))→((p→(¬q→p))→(p→q))) by detachment of [L8] and [L12]
[L14] (((p→(¬q→¬p))→(p→(¬q→p)))→((p→(¬q→¬p))→(p→q))) by detachment of [L3] and [L13]
[L15] ((p→(¬q→p))→((p→(¬q→¬p))→(p→(¬q→p)))) by substitution of [A1] with p↦(p→(¬q→p)), q↦(p→(¬q→¬p))
[L16] (p→(¬q→p)) by substitution of [A1] with p↦p, q↦¬q
[L17] ((p→(¬q→¬p))→(p→(¬q→p))) by detachment of [L15] and [L16]
[L18] ((p→(¬q→¬p))→(p→q)) by detachment of [L14] and [L17]
[L19] (¬p→((p→(¬q→¬p))→(p→q))) by detachment of [L2] and [L18]
[L20] ((¬p→(p→(¬q→¬p)))→(¬p→(p→q))) by detachment of [L1] and [L19]
[L21] ((¬p→((¬q→¬p)→(p→(¬q→¬p))))→((¬p→(¬q→¬p))→(¬p→(p→(¬q→¬p))))) by substitution of [A2] with p↦¬p, q↦(¬q→¬p), r↦(p→(¬q→¬p))
[L22] (((¬q→¬p)→(p→(¬q→¬p)))→(¬p→((¬q→¬p)→(p→(¬q→¬p))))) by substitution of [A1] with p↦((¬q→¬p)→(p→(¬q→¬p))), q↦¬p
[L23] ((¬q→¬p)→(p→(¬q→¬p))) by substitution of [A1] with p↦(¬q→¬p), q↦p
[L24] (¬p→((¬q→¬p)→(p→(¬q→¬p)))) by detachment of [L22] and [L23]
[L25] ((¬p→(¬q→¬p))→(¬p→(p→(¬q→¬p)))) by detachment of [L21] and [L24]
[L26] (¬p→(¬q→¬p)) by substitution of [A1] with p↦¬p, q↦¬q
[L27] (¬p→(p→(¬q→¬p))) by detachment of [L25] and [L26]
[L28] (¬p→(p→q)) by detachment of [L20] and [L27]

Proof by Tableau method is here.